lesson دراستي - حل تمارين 3-4 التكامل - الرياضيات سادس أدبي

للوصول السريع إلى الدروس والاختبارات..

حمل تطبيق دراستي من متجر جوجل

تمارين (3-4)

1- جد تكاملات كلاً مما يأتي:

- (2x+5)(x+1)dx

(2x+5)(x+1)dx=(2x2+2x+5x+5)dx=(2x2+7x+5)dx=2x33+7x22+5x+C

- 11(x2+3)(x2)dx

11(x2+3)(x2)dx=11(x32x2+3x6)dx=[x442x33+3x226x]11=(1423+326)(14+23+32+6)=1423+3261423326)=236236=4312=4363=403

- x(x+5)dx

x(x+5)dx=x12(x12+5)dx=(x+5x12)dx=x22+5x3232+c=x22+5(23)x32+C=x22+103x32+C

- 04x(x+1)2dx

04x(x+1)2dx=04x12(x2+2x+1)dx=04(x52+2x32+x12)dx=[27x72+225x52+23x32]04=[27x72+45x52+23x32]04=[27x7+45x5+23x3]04=(27(4)7+45(4)5+23(4)3)(0)=(27(2)7+45(2)5+23(2)3)=(27(128)+45(32)+23(8))=2567+1285+163=3840+2688+560105=7088105

- x(x+2)2dx

x(x+2)2dx=x12(x+2x12+4)dx=(x32+4x+4x12)dx=25x52+2x2+83x32+C

- 10x327x3dx

10x327x3dx=10(x3)(x2+3x+9)x3dx=[x33+3x22+9x]10=(0)(13+329)=1332+9=29+546=7+546=476

- x41x1dx

x41x1dx=(x21)(x2+1)x1dx=(x1)(x+1)(x2+1)x1dx=(x3+x+x2+1)dx=x44+x22+x33+x+C

- 01xdxx2+1

01xdxx2+101xdx(x2+1)12=01(x2+1)12xdx,f¯(x)=2x=1201(x2+1)12xdx=12[(x2+1)1212]01=[x2+1]01=(1+1(0+1)=21

- x2+1dxx3+3x+13

x2+1dxx3+3x+13=x2+1dx(x3+3x+1)13=(x3+3x+1)13(x2+1)dx=13(x3+3x+1)13(3x2+3)dx=13(x3+3x+1)2323+Cf¯(x)=3x2+3=1332(x3+3x+1)23+C=12(x3+3x+1)23+C

- 03(3x1)23dx

03(3x1)23dx=0(3x1)23dxf¯(x)=3=1303(3x1)233dx=13[(3x1)5353]03=1335[(3x1)23]03=15[(3x1)53]03=15[(8)53(01)53=15[(2)2+1]=15[32+1]=335

- x3+1x23dx

x3+1x23dx=x13+1x23dx=x23(x13+1)dx=(x13+x23)dx=32x23+3x13+C

- x13xdx

x13xdx=(x121)13x12dx(x121)13x12dx=2(x121)1312x12dx=2(x1)4343+C=234(x1)43+C=32(x1)43+C

- x4a2x5+b25dx

x4a2x5+b25dx=(a2x5+b2)15x3dx,f¯(x)=5a2x4=15a2(a2x5+b2)155a2x4dx=15a2(a2x5+b2)4545+C=15a254(a2x5+b2)45+C=14a2(a2x5+b2)45+C

- 08x214x+49dx

ملاحظة: abx2dxab|x|dx

08(x7)2dx=08|x7|dx|x7|={x7,x7x+7,x<7807(x+7)dx+77(x7)dx=[x22+7x]07+[x227x]78=[(492+49)(0)]+[(64256)(49249)]=[49+982]+[(3256)(49982)]=[492]+[(24)(492)]=(492)+[24+492]=(492)+(48+492)=492+12=502=25

- dx(2x3)2

(2x3)2dxf¯(x)=2=12(2x3)22dx=12(2x3)11+C=12(2x3)+C

- 113x52x75dx

113x52x75dx=11x5(32x2)5dx=11(32x2)15xdxf¯(x)=4x=1411(32x2)154xdx=14[(32x2)6565]11=1456[(32x2)65]11=524[(32x2)65]11=524[(32)65(32)65]=524[11]=0

- 2x57x33dx

2x57x33dx=x3(2x27)3dx=(2x27)13×dx,f¯(x)=4x=14(2x27)134xdx=14(2x27)4343+C=1434(2x27)43+C=316(2x27)43+C

- 1b(134x)dx=9 جد قيمة b

[13x2x2]1b=9(13b2b2)(132)=9=13b2b2119=013b2b220=0(2b2+13b20=0)(1)2b213b+20=0(b4)(2b5)=0إما b=4 أو b=52

للوصول السريع إلى الدروس والاختبارات..

حمل تطبيق دراستي من متجر جوجل

النقاشات