حلول الأسئلة

السؤال

أكتب معادلة القطع الزائد في الحالات الآتية ثم ارسم القطع:

الحل

مركزه نقطة الأصل وبؤرتاه على محور الصادات وطول محوره المرافق 2 2 وحدة واختلافه المركزي 3

البؤرتان صاديتان ومعادلة القطع الزائد y 2 a 2 y 2 b 2 = 1

2 b = 2 2 b = 2 b 2 = 2 e = c a 3 = c a c = 3 a c 2 = 9 a 2 c 2 = a 2 + b 2 9 a 2 = a 2 + 2 8 a 2 = 2 a 2 = 1 4   ,   c 2 = 9 4 F 1 ¯ ( 0 , 3 2 )   ,   F 2 ¯ ( 0 , 3 2 ) V 1 ¯ ( 0 , 1 2 )   ,   V 2 ¯ ( 0 , 1 2 ) y 2 1 4 x 2 2 = 1 4 y 2 1 x 2 2 = 1       الزائد   القطع   معادلة

الشكل 3

مشاركة الحل

تمارين (3-2)

(1)- عين كل من البؤرتين والرأسين ثم جد طول كل من المحورين والاختلاف المركزي للقطوع الزائدة الآتية:

12x24y2=48

نقسم طرفي المعادلة على (48)

x24y212=1a2=4a=22a=4  وحدة....الحقيقي المحور طولb2=12b=232b=2(23)=43   وحدة....المرافق المحور طولc2=a2+b2=4+12=16c2=16c=4V1(2,0) , V2(2,0)   ارأسانF1(4,0) , F2(4,0)   البؤرتانe=ca=42=2>1   المركزي الاختلاف

16x29y2=144

نقسم طرفي المعادلة على (144)

x29y216=1a2=9a=32a=6   وحدة....الحقيقي المحور طولb2=16b=42b=8   وحدة....المرافق المحور طولc2=a2+b2=9+16=25c2=25c=5F1(5,0) , F2(5,0)   البؤرتانV1(3,0) , V2(3,0)   الرأسانe=ca=53>1   المركزي الاختلاف

2(y+1)24(x1)2=8

نقسم طرفي المعادلة على (8)

(y+1)24(x1)22=1بالمقارنة(yk)2a2(xh)2b2=1,h=1,k=1(h,k)=(1,1)a2=4a=22a=4 الحقيقي المحور طولb2=2a=22b=22 المرافق المحور طولc2=a2+b2=4+2=6c2=6c=6F1¯(h,c+k)=F1¯(1,61) البؤرتانF2¯(h,c+k)=F2¯(1,61)V1¯(h,a+k)=V1¯(1,1) الرأسانV2¯(h,a+k)=V2¯(1,3)e=ca=62>1 المركزي الاختلاف

16x2+160x9y2+18y=185

نرتب معادلة القطع الزائد بشكل مربع كامل كما يلي:

16(x2+10x)9(y22y)=185

بإضافة (391) إلى طرفي المعادلة حتى تكون حدود x وحدود y بشكل مربع كامل.

(12x معامل)2=(12(10))2=25(12y معامل)2=(12(2))2=116(x2+10x+25)9(y22y+1)=185+400916(x+5)29(y1)2=57616(x+5)25769(y1)2576=576576(x+5)236(y1)264=1(xh)2a2(yk)2b2=1,h=5,k=1(h,k)=(5,1)a2=36a=62a=12 الحقيقي المحور طولb2=64a=82b=16 المرافق المحور طولc2=a2+b2=36+64=100c2=100c=10F1¯(c+h,k)=F1¯(5,1) البؤرتانF2¯(c+h,k)=F2¯(15,1)V1¯(a+h,k)=V1¯(1,1) الرأسانV2¯(a+h,k)=V2¯(11,1)e=ca=106=53>1 المركزي الاختلاف

(2)- أكتب معادلة القطع الزائد في الحالات الآتية ثم ارسم القطع:

البؤرتان هما النقطتان (±5,0) ويتقاطع مع محور السينات عند x=3 ومركزه نقطة الأصل.

البؤرتان سينيتان ومعادلة القطع:

x2a2y2b2=1c=5c2=25F1¯(5,0) , F2¯(5,0)

ويتقاطع مع محور السينات عند x=3 والرأسان هما:

V1(3,0) , V2(3,0)a=3a2=9c2=a2+b225=9+b2b2=16x29y216=1   الزائد القطع معادلة

الشكل 1

طول محوره الحقيق 12 وحدة، وطول محوره المرافق 10 وحدات، وينطبق محوراه على المحورين الإحداثيين ومركزه نقطة الأصل.

2a=12a=6a2=362b=10b=5b2=25c2=a2+b2=25+36c2=61

البؤرتان سينيتان فإن معادلة القطع الزائد هي:

x236y225=1

الشكل 1

البؤرتان صاديتان فإن معادلة القطع الزائد هي:

y236x225=1

الشكل 2

مركزه نقطة الأصل وبؤرتاه على محور الصادات وطول محوره المرافق 22 وحدة واختلافه المركزي 3

البؤرتان صاديتان ومعادلة القطع الزائد y2a2y2b2=1

2b=22b=2b2=2e=ca3=cac=3ac2=9a2c2=a2+b29a2=a2+28a2=2a2=14 , c2=94F1¯(0,32) , F2¯(0,32)V1¯(0,12) , V2¯(0,12)y214x22=14y21x22=1   الزائد القطع معادلة

الشكل 3

(3)- جد باستخدام التعريف القطع الزائد الذي مركزه نقطة الأصل وبؤرتيه (22,0) , (22,0) وينطبق محوراه على المحورين الإحداثيين والقيمة المطلقة للفرق بين بعدي أية نقطة منه عن بؤرتيه يساوي 4

2a=4a=2  النقطة P(x,y) الزائد القطع|pF1pF2|=2a  التعريف حسبpF1pF2=±2a(x22)2+(y0)2(x+22)2+(y0)2=±4(x22)2+y2(x+22)2+y2=±4(x22)2+y2=±4+(x+22)2+y2   الطرفين بتربيعx242x+8+y2=16±8(x+22)2+y2+x2+42x+8+y2[±8(x+22)2+y2=16+82x]÷8±(x+22)2+y2=2+2x   الطرفين بتربيعx2+42x+8+y2=4+42x+2x22x2x2y2=84[x2y2=4]÷4x24y24=1   الزائد القطع معادلة

الشكل

(4)- قطع زائد طول محوره الحقيقي 6 وحدات وإحدى بؤرتيه هي بؤرة القطع المكافئ الذي رأسه نقطة الأصل ويمر بالنقطتين (1,25) , (1,25)، جد معادلتي القطع المكافئ الذي رأسه نقطة الأصل والقطع الزائد الذي مركزه نقطة الأصل.

من القطع المكافئ:

النقطتان (1,25) , (1,25) متناظرة مع المحور السيني لذا فبؤرته سينية وفتحته نحو اليمين ومعادلة القطع المكافئ y2=4px

النقطة (1,25) تحقق معادلة القطع المكافئ (لأنه يمر بها).

(25)2=4p(1)20=4pp=5(5,0)   البؤرةy2=20x   المكافئ القطع معادلة

بؤرة القطع المكافئ 5,0 تمثل إحدى بؤرتي القطع الزائد.

من القطع الزائد:

2a=6a=3a2=9

(5,0),(5,0) بؤرتا القطع الزائد x2a2y2b2=1

c=5c2=25c2=a2+b225=9+b2b2=16x29y216=1    الزائد القطع معادلة

(5)- قطع زائد مركزه نقطة الأصل ومعادلته hx2ky2=90 وطول محوره الحقيقي 62 وحدة وبؤرتاه تنطبقان على بؤرتي القطع الناقص الذي معادلته 9x2+16y2=576 جد قيمة كل من h , k التي تنتمي إلى مجموعة الأعداد الحقيقية.

من القطع الناقص:

[9x2+16y2=576]÷5769x2576+16y2576=576576x264+y236=1a2=64 ,b2=36a2=c2+b2c2=6436=28c=27(27,0) , (27,0)   الناقص القطع بؤرتا

من القطع الزائد:

(27,0) , (27,0)   الزائد القطع بؤرتاx2a2y2b2=1c=27c2=282a=62a=32a2=18c2=a2+b228=18+b2b2=10x218y210=1   الزائد القطع معادلة[hx2ky2=90]÷90hx290ky290=9090x290hy290k=1a2=90hh=90a2=9018h=5 , b2=90kk=90b2=9010k=9

(6)- أكتب معادلة القطع الزائد الذي مركزه نقطة الأصل إذا علمت أن أحد رأسيه يبعد عن البؤرتين بالعددين 1 , 9 وحدات على الترتيب وينطبق محوراه على المحورين الإحداثيين.

2c=1+9=10c=5c2=252a=91=8a=4a2=16c2=a2+b2b2=c2a2b2=2516b2=9

هناك احتمالين لمعادلة القطع الزائد:

  • معادلة القطع الزائد سينية: x216y29=1
  • معادلة القطع الزائد صادية: y216x29=1

(7)- جد معادلة القطع الناقص الذي بؤرتاه هما بؤرتا القطع الزائد الذي معادلته x23y2=12 والنسبة بين طولي محوريه 53= ومركزه نقطة الأصل.

من القطع الزائد:

[x23y2=12]÷12x2123y212=1212x212y24=1a2=12b2=4c2=a2+b2c2=12+4c2=16c=4(4,0) , (4,0)   الزائد القطع بؤرتا

من القطع الناقص:

x2a2+y2b2=1(4,0),(4,0)c=4c2=16  الناقص القطع بؤرتا2a2b=53a=5b3a2=25b29a2=c2+b2[25b29=16+b2]×925b2=144+9b216b2=144b2=9a2=25b29=25(9)9a2=25x225+y29=1   الناقص القطع معادلة

(8)- النقطة P(6,L) تنتمي إلى القطع الزائد الذي مركزه نقطة الأصل ومعادلته x23y2=12 جد كلاً من:

قيمة L

النقطة P(6,L) تنتمي إلى القطع الزائد وهي تحقق معادلته x23y2=12

(6)23y2=12363L2=123L2=24L2=8L=±22P1(6,22),P2(6,22)

طول نصف القطر البؤري للقطع المرسوم في الجهة اليمنى من النقطة P

من القطع الزائد:

[x23y2=12]÷12x2123y212=1212x212y24=1a2=12c2=a2+b2c2=12+4=16c=±4F1(4,0) , F2(4,0)

المقصود بنصف القطر البؤري (اليمين) هو البعد بين البؤرة اليمنى F1(4,0) والنقطة p

P1F1=(x2x1)2+(y2y1)2=(64)2+(220)2=4+8=12=23   طول وحدة

(9)- جد معادلة القطع الزائد الذي بؤرتاه هما بؤرتا القطع الناقص x29+y225=1 ويمس دليل القطع المكافئ x2+12y=0

من القطع المكافئ:

x2=12yx2=4py∣⇒4p=12p=3y=py=3   الدليل معادلة

من القطع الناقص:

x29+y225=1a2=25 , b2=9a2=b2+c2c2=259c2=16c=4(0,4) , (0,4)

من القطع الزائد:

دليل القطع المكافئ يقطع المحور الصادي عند النقطة 0,3 وهي رأس القطع الزائد:

a=3a2=9

بؤرتا القطع الناقص (صاديتان) وتنطبقان على بؤرتي القطع الزائد فمعادلة القطع الزائد y2a2x2b2=1

(0,4) , (0,4)   الزائد القطع بؤرتاc=4c2=16c2=a2+b216=9+b2b2=7y29x27=1   الزائد القطع معادلة

مشاركة الدرس

السؤال

أكتب معادلة القطع الزائد في الحالات الآتية ثم ارسم القطع:

الحل

مركزه نقطة الأصل وبؤرتاه على محور الصادات وطول محوره المرافق 2 2 وحدة واختلافه المركزي 3

البؤرتان صاديتان ومعادلة القطع الزائد y 2 a 2 y 2 b 2 = 1

2 b = 2 2 b = 2 b 2 = 2 e = c a 3 = c a c = 3 a c 2 = 9 a 2 c 2 = a 2 + b 2 9 a 2 = a 2 + 2 8 a 2 = 2 a 2 = 1 4   ,   c 2 = 9 4 F 1 ¯ ( 0 , 3 2 )   ,   F 2 ¯ ( 0 , 3 2 ) V 1 ¯ ( 0 , 1 2 )   ,   V 2 ¯ ( 0 , 1 2 ) y 2 1 4 x 2 2 = 1 4 y 2 1 x 2 2 = 1       الزائد   القطع   معادلة

الشكل 3

تمارين (3-2)

(1)- عين كل من البؤرتين والرأسين ثم جد طول كل من المحورين والاختلاف المركزي للقطوع الزائدة الآتية:

12x24y2=48

نقسم طرفي المعادلة على (48)

x24y212=1a2=4a=22a=4  وحدة....الحقيقي المحور طولb2=12b=232b=2(23)=43   وحدة....المرافق المحور طولc2=a2+b2=4+12=16c2=16c=4V1(2,0) , V2(2,0)   ارأسانF1(4,0) , F2(4,0)   البؤرتانe=ca=42=2>1   المركزي الاختلاف

16x29y2=144

نقسم طرفي المعادلة على (144)

x29y216=1a2=9a=32a=6   وحدة....الحقيقي المحور طولb2=16b=42b=8   وحدة....المرافق المحور طولc2=a2+b2=9+16=25c2=25c=5F1(5,0) , F2(5,0)   البؤرتانV1(3,0) , V2(3,0)   الرأسانe=ca=53>1   المركزي الاختلاف

2(y+1)24(x1)2=8

نقسم طرفي المعادلة على (8)

(y+1)24(x1)22=1بالمقارنة(yk)2a2(xh)2b2=1,h=1,k=1(h,k)=(1,1)a2=4a=22a=4 الحقيقي المحور طولb2=2a=22b=22 المرافق المحور طولc2=a2+b2=4+2=6c2=6c=6F1¯(h,c+k)=F1¯(1,61) البؤرتانF2¯(h,c+k)=F2¯(1,61)V1¯(h,a+k)=V1¯(1,1) الرأسانV2¯(h,a+k)=V2¯(1,3)e=ca=62>1 المركزي الاختلاف

16x2+160x9y2+18y=185

نرتب معادلة القطع الزائد بشكل مربع كامل كما يلي:

16(x2+10x)9(y22y)=185

بإضافة (391) إلى طرفي المعادلة حتى تكون حدود x وحدود y بشكل مربع كامل.

(12x معامل)2=(12(10))2=25(12y معامل)2=(12(2))2=116(x2+10x+25)9(y22y+1)=185+400916(x+5)29(y1)2=57616(x+5)25769(y1)2576=576576(x+5)236(y1)264=1(xh)2a2(yk)2b2=1,h=5,k=1(h,k)=(5,1)a2=36a=62a=12 الحقيقي المحور طولb2=64a=82b=16 المرافق المحور طولc2=a2+b2=36+64=100c2=100c=10F1¯(c+h,k)=F1¯(5,1) البؤرتانF2¯(c+h,k)=F2¯(15,1)V1¯(a+h,k)=V1¯(1,1) الرأسانV2¯(a+h,k)=V2¯(11,1)e=ca=106=53>1 المركزي الاختلاف

(2)- أكتب معادلة القطع الزائد في الحالات الآتية ثم ارسم القطع:

البؤرتان هما النقطتان (±5,0) ويتقاطع مع محور السينات عند x=3 ومركزه نقطة الأصل.

البؤرتان سينيتان ومعادلة القطع:

x2a2y2b2=1c=5c2=25F1¯(5,0) , F2¯(5,0)

ويتقاطع مع محور السينات عند x=3 والرأسان هما:

V1(3,0) , V2(3,0)a=3a2=9c2=a2+b225=9+b2b2=16x29y216=1   الزائد القطع معادلة

الشكل 1

طول محوره الحقيق 12 وحدة، وطول محوره المرافق 10 وحدات، وينطبق محوراه على المحورين الإحداثيين ومركزه نقطة الأصل.

2a=12a=6a2=362b=10b=5b2=25c2=a2+b2=25+36c2=61

البؤرتان سينيتان فإن معادلة القطع الزائد هي:

x236y225=1

الشكل 1

البؤرتان صاديتان فإن معادلة القطع الزائد هي:

y236x225=1

الشكل 2

مركزه نقطة الأصل وبؤرتاه على محور الصادات وطول محوره المرافق 22 وحدة واختلافه المركزي 3

البؤرتان صاديتان ومعادلة القطع الزائد y2a2y2b2=1

2b=22b=2b2=2e=ca3=cac=3ac2=9a2c2=a2+b29a2=a2+28a2=2a2=14 , c2=94F1¯(0,32) , F2¯(0,32)V1¯(0,12) , V2¯(0,12)y214x22=14y21x22=1   الزائد القطع معادلة

الشكل 3

(3)- جد باستخدام التعريف القطع الزائد الذي مركزه نقطة الأصل وبؤرتيه (22,0) , (22,0) وينطبق محوراه على المحورين الإحداثيين والقيمة المطلقة للفرق بين بعدي أية نقطة منه عن بؤرتيه يساوي 4

2a=4a=2  النقطة P(x,y) الزائد القطع|pF1pF2|=2a  التعريف حسبpF1pF2=±2a(x22)2+(y0)2(x+22)2+(y0)2=±4(x22)2+y2(x+22)2+y2=±4(x22)2+y2=±4+(x+22)2+y2   الطرفين بتربيعx242x+8+y2=16±8(x+22)2+y2+x2+42x+8+y2[±8(x+22)2+y2=16+82x]÷8±(x+22)2+y2=2+2x   الطرفين بتربيعx2+42x+8+y2=4+42x+2x22x2x2y2=84[x2y2=4]÷4x24y24=1   الزائد القطع معادلة

الشكل

(4)- قطع زائد طول محوره الحقيقي 6 وحدات وإحدى بؤرتيه هي بؤرة القطع المكافئ الذي رأسه نقطة الأصل ويمر بالنقطتين (1,25) , (1,25)، جد معادلتي القطع المكافئ الذي رأسه نقطة الأصل والقطع الزائد الذي مركزه نقطة الأصل.

من القطع المكافئ:

النقطتان (1,25) , (1,25) متناظرة مع المحور السيني لذا فبؤرته سينية وفتحته نحو اليمين ومعادلة القطع المكافئ y2=4px

النقطة (1,25) تحقق معادلة القطع المكافئ (لأنه يمر بها).

(25)2=4p(1)20=4pp=5(5,0)   البؤرةy2=20x   المكافئ القطع معادلة

بؤرة القطع المكافئ 5,0 تمثل إحدى بؤرتي القطع الزائد.

من القطع الزائد:

2a=6a=3a2=9

(5,0),(5,0) بؤرتا القطع الزائد x2a2y2b2=1

c=5c2=25c2=a2+b225=9+b2b2=16x29y216=1    الزائد القطع معادلة

(5)- قطع زائد مركزه نقطة الأصل ومعادلته hx2ky2=90 وطول محوره الحقيقي 62 وحدة وبؤرتاه تنطبقان على بؤرتي القطع الناقص الذي معادلته 9x2+16y2=576 جد قيمة كل من h , k التي تنتمي إلى مجموعة الأعداد الحقيقية.

من القطع الناقص:

[9x2+16y2=576]÷5769x2576+16y2576=576576x264+y236=1a2=64 ,b2=36a2=c2+b2c2=6436=28c=27(27,0) , (27,0)   الناقص القطع بؤرتا

من القطع الزائد:

(27,0) , (27,0)   الزائد القطع بؤرتاx2a2y2b2=1c=27c2=282a=62a=32a2=18c2=a2+b228=18+b2b2=10x218y210=1   الزائد القطع معادلة[hx2ky2=90]÷90hx290ky290=9090x290hy290k=1a2=90hh=90a2=9018h=5 , b2=90kk=90b2=9010k=9

(6)- أكتب معادلة القطع الزائد الذي مركزه نقطة الأصل إذا علمت أن أحد رأسيه يبعد عن البؤرتين بالعددين 1 , 9 وحدات على الترتيب وينطبق محوراه على المحورين الإحداثيين.

2c=1+9=10c=5c2=252a=91=8a=4a2=16c2=a2+b2b2=c2a2b2=2516b2=9

هناك احتمالين لمعادلة القطع الزائد:

  • معادلة القطع الزائد سينية: x216y29=1
  • معادلة القطع الزائد صادية: y216x29=1

(7)- جد معادلة القطع الناقص الذي بؤرتاه هما بؤرتا القطع الزائد الذي معادلته x23y2=12 والنسبة بين طولي محوريه 53= ومركزه نقطة الأصل.

من القطع الزائد:

[x23y2=12]÷12x2123y212=1212x212y24=1a2=12b2=4c2=a2+b2c2=12+4c2=16c=4(4,0) , (4,0)   الزائد القطع بؤرتا

من القطع الناقص:

x2a2+y2b2=1(4,0),(4,0)c=4c2=16  الناقص القطع بؤرتا2a2b=53a=5b3a2=25b29a2=c2+b2[25b29=16+b2]×925b2=144+9b216b2=144b2=9a2=25b29=25(9)9a2=25x225+y29=1   الناقص القطع معادلة

(8)- النقطة P(6,L) تنتمي إلى القطع الزائد الذي مركزه نقطة الأصل ومعادلته x23y2=12 جد كلاً من:

قيمة L

النقطة P(6,L) تنتمي إلى القطع الزائد وهي تحقق معادلته x23y2=12

(6)23y2=12363L2=123L2=24L2=8L=±22P1(6,22),P2(6,22)

طول نصف القطر البؤري للقطع المرسوم في الجهة اليمنى من النقطة P

من القطع الزائد:

[x23y2=12]÷12x2123y212=1212x212y24=1a2=12c2=a2+b2c2=12+4=16c=±4F1(4,0) , F2(4,0)

المقصود بنصف القطر البؤري (اليمين) هو البعد بين البؤرة اليمنى F1(4,0) والنقطة p

P1F1=(x2x1)2+(y2y1)2=(64)2+(220)2=4+8=12=23   طول وحدة

(9)- جد معادلة القطع الزائد الذي بؤرتاه هما بؤرتا القطع الناقص x29+y225=1 ويمس دليل القطع المكافئ x2+12y=0

من القطع المكافئ:

x2=12yx2=4py∣⇒4p=12p=3y=py=3   الدليل معادلة

من القطع الناقص:

x29+y225=1a2=25 , b2=9a2=b2+c2c2=259c2=16c=4(0,4) , (0,4)

من القطع الزائد:

دليل القطع المكافئ يقطع المحور الصادي عند النقطة 0,3 وهي رأس القطع الزائد:

a=3a2=9

بؤرتا القطع الناقص (صاديتان) وتنطبقان على بؤرتي القطع الزائد فمعادلة القطع الزائد y2a2x2b2=1

(0,4) , (0,4)   الزائد القطع بؤرتاc=4c2=16c2=a2+b216=9+b2b2=7y29x27=1   الزائد القطع معادلة