السؤال
الحل
z 2 + 7 z − 8 z − 1 × z 2 − 4 z 2 + 6 z − 16
z 2 + 7 z − 8 z − 1 × z 2 − 4 z 2 + 6 z − 16 = ( z + 8 ) ( z − 1 ) z − 1 × ( z − 2 ) ( z + 2 ) ( z + 8 ) ( z − 2 ) = z + 2
2z−4z+2z2−7z+6=(2z−2)(z−1)(z−6)(z−1)=2z−2z−6
y3+27y3−3y2+9y=(y+3)(y2−3y+9)y(y2−3y+9)=y+3y
5x+3x+3×(x2+5x+6)25x2−9=(5x+3)(x+3)×(x+2)(x+3)(5x−3)(5x+3)=x+25x−3
z2+7z−8z−1×z2−4z2+6z−16=(z+8)(z−1)z−1×(z−2)(z+2)(z+8)(z−2)=z+2
x2−9x2−4x+4×x2−4x2−x−6=(x−3)(x+3)(x−2)2×(x−2)(x+2)(x−3)(x+2)=x+3x−2
2y2−2yy2−9÷y2+y−2y2+2y−3=2y(y−1)(y−3)(y+3)×(y+3)(y−1)(y+2)(y−1)=2y(y−1)(y−3)(y+2)
2x2−9+3x2−4x+3=2(y−3)(x+3)+3(x−3)(x−1)=2(x−1)+3(x+3)(x−3)(x+3)(x−1)=2x−2+3x+9(x−3)(x+3)(x−1)=5x+7(x−3)(x+3)(x−1)
2y3−128y3+4y2+16y−y−1y=2(y−4)(y2+4y+16)y(y2+4y+16)−y−1y=2y−8y−y−1y=2y−8−y+1y=y−7y
z2+z+1z4−z−z+3z2+2z−3=z2+z+1z(z−1)(z2+z+1)−z+3(z+3)(z−1)=1z(z−1)−1(z−1)=1−zz(z−1)=−(z−1)z(z−1)=−1z
x2−1x2−2x+1−1=(x−1)(x+1)(x−1)2−1=x+1−x+1x−1=2x−1
3z−1+2z+3+8z2+2z−3=3z−1+2z+3+8(z−1)(z+3)=3(z+3)+2(z−1)+8(z−1)(z+3)=3z+9+2z−2+8(z−1)(z+3)=5z+15(z−1)(z+3)=5(z+3)(z−1)(z+3)=5(z−1)
y−3y−1+5y−15(y−3)2−3y+1(y2−4y+3)=y−3y−1+5(y−3)(y−3)2−3y+1(y−3)(y−1)=(y−3)2+5(y−1)−3y−1(y−1)(y−3)=y2−6y+9+5y−5−3y−1(y−1)(y−3)=y2−4y+3(y−1)(y−3)=1
تم حفظ السؤال في محفظة الأسئلة
لايمكن حفظ السؤال لانه خارج الصف المحدد من قبلكم