السؤال
الحل
∫ x 2 + 1 d x x 3 + 3 x + 1 3
∫ x 2 + 1 d x x 3 + 3 x + 1 3 = ∫ x 2 + 1 d x ( x 3 + 3 x + 1 ) 1 3 = ∫ ( x 3 + 3 x + 1 ) − 1 3 ( x 2 + 1 ) d x = 1 3 ∫ ( x 3 + 3 x + 1 ) − 1 3 ( 3 x 2 + 3 ) d x = 1 3 ( x 3 + 3 x + 1 ) 2 3 2 3 + C f ¯ ( x ) = 3 x 2 + 3 = 1 3 ⋅ 3 2 ( x 3 + 3 x + 1 ) 2 3 + C = 1 2 ( x 3 + 3 x + 1 ) 2 3 + C
∫(2x+5)(x+1)dx=∫(2x2+2x+5x+5)dx=∫(2x2+7x+5)dx=2x33+7x22+5x+C
∫−11(x2+3)(x−2)dx=∫−11(x3−2x2+3x−6)dx=[x44−2x33+3x22−6x]−1−1=(14−23+32−6)−(14+23+32+6)=14−23+32−6−14−23−32−6)=−23−6−23−6=−43−12=−4−363=−403
∫x(x+5)dx=∫x12(x12+5)dx=∫(x+5x12)dx=∫x22+5x3232+c=x22+5(23)x32+C=x22+103x32+C
∫04x(x+1)2dx=∫04x12(x2+2x+1)dx=∫04(x52+2x32+x12)dx=[27x72+225x52+23x32]04=[27x72+45x52+23x32]04=[27x7+45x5+23x3]04=(27(4)7+45(4)5+23(4)3)−(0)=(27(2)7+45(2)5+23(2)3)=(27(128)+45(32)+23(8))=2567+1285+163=3840+2688+560105=7088105
∫x(x+2)2dx=∫x12(x+2x12+4)dx=∫(x32+4x+4x12)dx=25x52+2x2+83x32+C
∫−10x3−27x−3dx=∫−10(x−3)(x2+3x+9)x−3dx=[x33+3x22+9x]−10=(0)−(−13+32−9)=13−32+9=2−9+546=−7+546=476
∫x4−1x−1dx=∫(x2−1)(x2+1)x−1dx=∫(x−1)(x+1)(x2+1)x−1dx=∫(x3+x+x2+1)dx=x44+x22+x33+x+C
∫01xdxx2+1⇒∫01xdx(x2+1)12=∫01(x2+1)−12xdx,f¯(x)=2x=12∫01(x2+1)−12xdx=12[(x2+1)1212]01=[x2+1]01=(1+1−(0+1)=2−1
∫x2+1dxx3+3x+13=∫x2+1dx(x3+3x+1)13=∫(x3+3x+1)−13(x2+1)dx=13∫(x3+3x+1)−13(3x2+3)dx=13(x3+3x+1)2323+Cf¯(x)=3x2+3=13⋅32(x3+3x+1)23+C=12(x3+3x+1)23+C
∫03(3x−1)23dx=∫0(3x−1)23dxf¯(x)=3=13∫03(3x−1)233dx=13[(3x−1)5353]03=13⋅35[(3x−1)23]03=15[(3x−1)53]03=15[(8)53−(0−1)53=15[(2)2+1]=15[32+1]=335
∫x3+1x23dx=∫x13+1x23dx=∫x−23(x13+1)dx=∫(x−13+x−23)dx=32x23+3x13+C
∫x−13xdx=∫(x12−1)13x12dx⇒(x12−1)13x−12dx=2∫(x12−1)1312x−12dx=2(x−1)4343+C=234(x−1)43+C=32(x−1)43+C
∫x4a2x5+b25dx=∫(a2x5+b2)−15x3dx,f¯(x)=5a2x4=15a2∫(a2x5+b2)−155a2x4dx=15a2(a2x5+b2)4545+C=15a2⋅54(a2x5+b2)45+C=14a2(a2x5+b2)45+C
ملاحظة: ∫abx2dx∫ab|x|dx
∫08(x−7)2dx=∫08|x−7|dx|x−7|={x−7,x≥7−x+7,x<78∫07(−x+7)dx+∫77(x−7)dx=[−x22+7x]07+[x22−7x]78=[(−492+49)−(0)]+[(642−56)−(492−49)]=[−49+982]+[(32−56)−(49−982)]=[492]+[(−24)−(−492)]=(492)+[−24+492]=(492)+(−48+492)=492+12=502=25
⇒∫(2x−3)−2dxf¯(x)=2=12∫(2x−3)−22dx=12(2x−3)−1−1+C=−12(2x−3)+C
∫−113x5−2x75dx=∫−11x5(3−2x2)5dx=∫−11(3−2x2)15xdxf¯(x)=−4x=−14∫−11(3−2x2)15−4xdx=−14[(3−2x2)6565]−11=−14⋅56[(3−2x2)65]−11=−524[(3−2x2)65]−11=−524[(3−2)65−(3−2)65]=−524[1−1]=0
∫2x5−7x33dx=∫x3(2x2−7)3dx=∫(2x2−7)13×dx,f¯(x)=4x=14∫(2x2−7)134xdx=14(2x2−7)4343+C=1434(2x2−7)43+C=316(2x2−7)43+C
[13x−2x2]1b=9⇒(13b−2b2)−(13−2)=9=13b−2b2−11−9=0⇒13b−2b2−20=0(−2b2+13b−20=0)(−1)⇒2b2−13b+20=0⇒(b−4)(2b−5)=0إما b=4 أو b=52
تم حفظ السؤال في محفظة الأسئلة
لايمكن حفظ السؤال لانه خارج الصف المحدد من قبلكم