حلول الأسئلة

السؤال

إذا كان المستقيم x y + 2 = 0 يمس منحني القطع المكافئ y 2 = h x جد بؤرة القطع المكافئ.

الحل

m = - x   معامل y   معامل = - 1 - 1 = 1

2 y y = h y = h 2 y       للمنحني   المماس   ميل

إذا مس أو وازی مستقیم منحني تساوى ميلاهما

h 2 y = 1 h = 2 y y = h 2 1       1   المستقيم   معادلة   في   نعوض x h 2 + 2 = 0 x = h 2 2 2       المكافئ   القطع   بمعادلة   2   ,   1   المعادلتين   نعوض ( h 2 ) 2 = h ( h 2 2 ) [ h 2 4 = h 2 2 2 h ] × 4 h 2 = 2 h 2 8 h 2 h 2 h 2 8 h = 0 h 2 8 h = 0 h ( h 8 ) = 0 either  h = 0     تهمل or  h 8 = 0 h = 8 y 2 = 8 x y 2 = 4 p x 4 p = 8 p = 2

بؤرة القطع المكافئ ( 2 , 0 )

مشاركة الحل

الأسئلة الوزارية حول إيجاد الثوابت

الأسئلة الوزارية حول إيجاد الثوابت

(1)- إذا كان 1,6 تمثل نهاية سفرى محلية للدالة f(x)=ax2+(xb)2 جد قيمة كل من a,b الحقيقيتين الموجبتين

1,6 تحقق معادلة الدالة والمشتقة عندها تسوي صفر

f(x)=ax2+(xb)26=a(1)2+(1b)26=a+12b+b2(1)f'(x)=2ax+2(xb)2a(1)+2(1b)=02a+22b=0]÷2a+1b=0a=b12   1 في نعوض6=b1+12b+b2b2b6=0(b3)(b+2)=0either b3=0b=3a=31=2orb+2=0b=2   يهمل

(2)- إذا كان منحني f(x)=x3bx2+cx يمر بالنقطة (2,2) وكانت للدالة نقطة انقلاب عند x=1 جد قيمتي كل من b,cR ثم جد نقطة النهاية العظمي المحلية للدالة f

(2,2) تنتمي للدالة فهي تحقق معادلة الدالة

f(x)=x3bx2+cx2=(2)3b(2)2+c(2)2=84b2c]÷21=42bc2bc=3(1)f'(x)=3x22bx+cf''(x)=6x2bf''(x)=06(1)2b=02b=6⇒∴b=32(3)c=36c=3⇒∴c=9f'(x)=3x22(3)x+(9)f'(x)=3x26x93x26x9=0]÷3x22x3=0(x3)(x+1)=0either x3=0x=3or x+1=0x=1f(x)=x33x29xf(1)=(1)33(1)29(1)=13+9=5

(1,5) نهاية عظمى محلية.

الشكل

(3)- جد نقطة الانقلاب لمنحني الدالة f(x)=x33x2 ثم جد معادلة مماس المنحني عند نقطة انقلابه.

f'(x)=3x23f''(x)=6x6x=0x=0f(0)=2

نقطة الانقلاب (0,2)

ميل المماس عند نقطة انقلابه f'(0)=3(0)23=3

yy1=m(xx1)y+2=3(x0)y+2=3x3x+y+2=0   المماس معادلة

الشكل

(4)- لتكن (1,2) ,f(x)=x3+bx2+cx+1 نقطة نهاية عظمى محلية للدالة جد قيمتي b,cR وهل توجد نقطة انقلاب للدالة؟

-1,2 تنتمي للدالة فهي تحقق معادلة الدالة

f(x)=x3+bx2+cx+12=1+bc+1bc=2(1)f'(x)=3x2+2bx+cf'(x)=03(1)2+2b(1)+c=032b+c=02b+c=3(2)bc=2...12b+c=3(2)   بالجمعb=1b=1   1 في نعوض1c=2c=1f''(x)=6x+2b=6x+26x+2=06x=2x=13f(x)=x3+x2x+1f(13)=(13)3+(13)2+13+1=3827(13,3827)   انقلاب نقطة

الشكل

(5)- إذا كانت f(x)=ax2(x+b)2 والنقطة (1,2) حرجة جد قيمة a,b الموجبتين ثم بین نوع النقطة الحرجة.

1,-2 تنتمي للدالة فهي تحقق معادلة

2=a(1+b)22=a(1+2b+b2)2=a12bb21=a2bb2(1)f'(x)=2ax2(x+b)f'(x)=02a(1)2(1+b)=0[2a22b=0]÷2a1b=0a=1+b(2)1=1+b2bb2b2+b2=0(b+2)(b1)=0either b+2=0b=2   يهملorb1=0b=1⇒∴a=1+1a=2f'(x)=4x2(x+1)

1,-2 نهاية صغرى محلية.

الشكل

(6)- إذا كان المستقيم y+9x=28 مماساً للدالة f(x)=ax3+bx2+1 عند النقطة (3,1) جد قيمة b,a

(3,1) تنتمي للدالة فهي تحقق معادلة الدالة

f(x)=ax3+bx2+11=a(3)3+b(3)2+11=27a+9b+10=27a+9b]÷93a+b=0(1)f'(x)=3ax2+2bxf'(3)=3a(9)+2b(3)f'(3)=27a+6b   المماس ميل

المماس ميل=x معامل -y معامل=-91=-9

[27a+6b=9]÷39a+2b=3.23a+b=0(1)]×29a+2b=3(2)6a+2b=0(1)]×29a2b=+3(2)3a=3a=1   1 في نعوض3(1)+b=03+b=0b=3

(7)- إذا علمت ان لمنحني الدالة f(x)=ax+bx1 نقطة نهاية صغرى محلية هي (3,10) فجد قيمة a,bR

(3,10) تحقق معادلة المنحني والمشتقة عندها تساوي صفر.

f(x)=ax+bx110=3a+b3110=3a+b2(×2)20=6a+b(1)f(x)=ax+b(x1)1f'(x)=ab(x1)2f'(x)=ab(x1)2ab(x1)2=0ab(31)2=0ab4=0(×4)4ab=0.(2)6a+b=20(1)4ab=0(2)10a=20a=24(2)b=0b=8

(8)- إذا كان المستقيم xy+2=0 يمس منحني القطع المكافئ y2=hx جد بؤرة القطع المكافئ.

m=-x معاملy معامل=-1-1=1

2yy=hy=h2y   للمنحني المماس ميل

إذا مس أو وازی مستقیم منحني تساوى ميلاهما

h2y=1h=2yy=h21   1 المستقيم معادلة في نعوضxh2+2=0x=h222   المكافئ القطع بمعادلة 2 , 1 المعادلتين نعوض(h2)2=h(h22)[h24=h222h]×4h2=2h28h2h2h28h=0h28h=0h(h8)=0either h=0  تهملor h8=0h=8y2=8xy2=4px4p=8p=2

بؤرة القطع المكافئ (2,0)

مشاركة الدرس

السؤال

إذا كان المستقيم x y + 2 = 0 يمس منحني القطع المكافئ y 2 = h x جد بؤرة القطع المكافئ.

الحل

m = - x   معامل y   معامل = - 1 - 1 = 1

2 y y = h y = h 2 y       للمنحني   المماس   ميل

إذا مس أو وازی مستقیم منحني تساوى ميلاهما

h 2 y = 1 h = 2 y y = h 2 1       1   المستقيم   معادلة   في   نعوض x h 2 + 2 = 0 x = h 2 2 2       المكافئ   القطع   بمعادلة   2   ,   1   المعادلتين   نعوض ( h 2 ) 2 = h ( h 2 2 ) [ h 2 4 = h 2 2 2 h ] × 4 h 2 = 2 h 2 8 h 2 h 2 h 2 8 h = 0 h 2 8 h = 0 h ( h 8 ) = 0 either  h = 0     تهمل or  h 8 = 0 h = 8 y 2 = 8 x y 2 = 4 p x 4 p = 8 p = 2

بؤرة القطع المكافئ ( 2 , 0 )

الأسئلة الوزارية حول إيجاد الثوابت

الأسئلة الوزارية حول إيجاد الثوابت

(1)- إذا كان 1,6 تمثل نهاية سفرى محلية للدالة f(x)=ax2+(xb)2 جد قيمة كل من a,b الحقيقيتين الموجبتين

1,6 تحقق معادلة الدالة والمشتقة عندها تسوي صفر

f(x)=ax2+(xb)26=a(1)2+(1b)26=a+12b+b2(1)f'(x)=2ax+2(xb)2a(1)+2(1b)=02a+22b=0]÷2a+1b=0a=b12   1 في نعوض6=b1+12b+b2b2b6=0(b3)(b+2)=0either b3=0b=3a=31=2orb+2=0b=2   يهمل

(2)- إذا كان منحني f(x)=x3bx2+cx يمر بالنقطة (2,2) وكانت للدالة نقطة انقلاب عند x=1 جد قيمتي كل من b,cR ثم جد نقطة النهاية العظمي المحلية للدالة f

(2,2) تنتمي للدالة فهي تحقق معادلة الدالة

f(x)=x3bx2+cx2=(2)3b(2)2+c(2)2=84b2c]÷21=42bc2bc=3(1)f'(x)=3x22bx+cf''(x)=6x2bf''(x)=06(1)2b=02b=6⇒∴b=32(3)c=36c=3⇒∴c=9f'(x)=3x22(3)x+(9)f'(x)=3x26x93x26x9=0]÷3x22x3=0(x3)(x+1)=0either x3=0x=3or x+1=0x=1f(x)=x33x29xf(1)=(1)33(1)29(1)=13+9=5

(1,5) نهاية عظمى محلية.

الشكل

(3)- جد نقطة الانقلاب لمنحني الدالة f(x)=x33x2 ثم جد معادلة مماس المنحني عند نقطة انقلابه.

f'(x)=3x23f''(x)=6x6x=0x=0f(0)=2

نقطة الانقلاب (0,2)

ميل المماس عند نقطة انقلابه f'(0)=3(0)23=3

yy1=m(xx1)y+2=3(x0)y+2=3x3x+y+2=0   المماس معادلة

الشكل

(4)- لتكن (1,2) ,f(x)=x3+bx2+cx+1 نقطة نهاية عظمى محلية للدالة جد قيمتي b,cR وهل توجد نقطة انقلاب للدالة؟

-1,2 تنتمي للدالة فهي تحقق معادلة الدالة

f(x)=x3+bx2+cx+12=1+bc+1bc=2(1)f'(x)=3x2+2bx+cf'(x)=03(1)2+2b(1)+c=032b+c=02b+c=3(2)bc=2...12b+c=3(2)   بالجمعb=1b=1   1 في نعوض1c=2c=1f''(x)=6x+2b=6x+26x+2=06x=2x=13f(x)=x3+x2x+1f(13)=(13)3+(13)2+13+1=3827(13,3827)   انقلاب نقطة

الشكل

(5)- إذا كانت f(x)=ax2(x+b)2 والنقطة (1,2) حرجة جد قيمة a,b الموجبتين ثم بین نوع النقطة الحرجة.

1,-2 تنتمي للدالة فهي تحقق معادلة

2=a(1+b)22=a(1+2b+b2)2=a12bb21=a2bb2(1)f'(x)=2ax2(x+b)f'(x)=02a(1)2(1+b)=0[2a22b=0]÷2a1b=0a=1+b(2)1=1+b2bb2b2+b2=0(b+2)(b1)=0either b+2=0b=2   يهملorb1=0b=1⇒∴a=1+1a=2f'(x)=4x2(x+1)

1,-2 نهاية صغرى محلية.

الشكل

(6)- إذا كان المستقيم y+9x=28 مماساً للدالة f(x)=ax3+bx2+1 عند النقطة (3,1) جد قيمة b,a

(3,1) تنتمي للدالة فهي تحقق معادلة الدالة

f(x)=ax3+bx2+11=a(3)3+b(3)2+11=27a+9b+10=27a+9b]÷93a+b=0(1)f'(x)=3ax2+2bxf'(3)=3a(9)+2b(3)f'(3)=27a+6b   المماس ميل

المماس ميل=x معامل -y معامل=-91=-9

[27a+6b=9]÷39a+2b=3.23a+b=0(1)]×29a+2b=3(2)6a+2b=0(1)]×29a2b=+3(2)3a=3a=1   1 في نعوض3(1)+b=03+b=0b=3

(7)- إذا علمت ان لمنحني الدالة f(x)=ax+bx1 نقطة نهاية صغرى محلية هي (3,10) فجد قيمة a,bR

(3,10) تحقق معادلة المنحني والمشتقة عندها تساوي صفر.

f(x)=ax+bx110=3a+b3110=3a+b2(×2)20=6a+b(1)f(x)=ax+b(x1)1f'(x)=ab(x1)2f'(x)=ab(x1)2ab(x1)2=0ab(31)2=0ab4=0(×4)4ab=0.(2)6a+b=20(1)4ab=0(2)10a=20a=24(2)b=0b=8

(8)- إذا كان المستقيم xy+2=0 يمس منحني القطع المكافئ y2=hx جد بؤرة القطع المكافئ.

m=-x معاملy معامل=-1-1=1

2yy=hy=h2y   للمنحني المماس ميل

إذا مس أو وازی مستقیم منحني تساوى ميلاهما

h2y=1h=2yy=h21   1 المستقيم معادلة في نعوضxh2+2=0x=h222   المكافئ القطع بمعادلة 2 , 1 المعادلتين نعوض(h2)2=h(h22)[h24=h222h]×4h2=2h28h2h2h28h=0h28h=0h(h8)=0either h=0  تهملor h8=0h=8y2=8xy2=4px4p=8p=2

بؤرة القطع المكافئ (2,0)