حلول الأسئلة

السؤال

إذا كانت f : [ 0 , b ] R   ,   f ( x ) = x 3 4 x 2 وكانت f تحقق مبرهنة القيمة المتوسطة عند c = 2 3 فجد قيمة b

الحل

f ( x ) = x 3 4 x 2 f ( x ) = 3 x 2 8 x f ' ( c ) = 3 c 2 8 c f ' ( 2 3 ) = 3 ( 4 9 ) 8 ( 2 3 ) = 4 3 16 3 = 12 3 = 4       المماس   ميل f ' ( c ) = f ( b ) f ( a ) b a = f ( b ) f ( 0 ) b 0 = b 3 4 b 2 0 b = b ( b 2 4 b ) b = b 2 4 b       الوتر   ميل

ميل المماس = ميل الوتر.

b 2 4 b = 4 b 2 4 b + 4 = 0 ( b 2 ) ( b 2 ) = 0 ( b 2 ) 2 = 0 بالجذر b = 2

مشاركة الحل

مبرهنة القيمة المتوسطة

مبرهنة القيمة المتوسطة

إذا كانت f مستمرة في الفترة المغلقة a , b وقابلة للاشتقاق على الفترة المفتوحة a , b فإنه يوجد على الأقل قيمة واحدة c تنتمي إلى الفترة a , b وتحقق:

  1. المماس // الوتر أي أن ميلاهما متساويان.

  2. ميل الوتر المار بالنقطتين A,B يساوي ΔyΔx=f(b)f(a)ba

  3. ميل المماس للمنحني عند c = المشتقة الأولى للدالة f عند c أي f'(c)

  4. المماس والوتر متوازيان لذا يتساوى ميلهما أي أن f'(c)=f(b)f(a)ba

الشكل

لإيجاد قيمة c التي تحقق f'(c)=f(b)f(a)ba يجب توفر الشرطيين التاليين:

  1. أن تكون f دالة مستمرة في الفترة المغلقة a , b

  2. أن تكون f دالة قابلة للاشتقاق على الفترة المفتوحة a , b

ملاحظة: إن مبرهنة رول هي حالة خاصة من مبرهنة القيمة المتوسطة ففي مبرهنة رول يجب توافر شرط ثالث هو f(a)=f(b) أي أن الوتر والمماس يوازيان محور السينات أي أن فرق الصادات = 0 لذا يصبح الميل = 0 فتحصل على f'(c)=0

(1)- جد قيمة c التي تحقق مبرهنة القيمة المتوسطة لكل من الدوال الآتية:

f(x)=x26x+4 , x[1,7]

  1. الدالة مستمرة في الفترة -1,7 لأنها كثيرة الحدود.

  2. الدالة قابلة للاشتقاق على الفترة -1,7 لأنها كثيرة حدود.

f'(x)=2x6f'(c)=2c6f'c)=f(b)f(a)ba=f(7)f(1)7(1)=11118=0   الوتر ميل

ميل المماس = ميل الوتر.

2c6=02c=6c=3(1,7)

f(x)=25x2 , x[4,0]

أوسع مجال للدالة.

25x2025=x2x=±5x[5,5]

1. نبحث استمرارية في الفترة -4,0

a[4,0]f(a)=25a2Rlimx4+f(x)=limx4+25x2=2516=9=3limx0f(x)=limx025x2=250=25=5

الدالة مستمرة في الفترة المغلقة -4,0

2. الدالة قابلة للاشتقاق عند الفترة المفتوحة -4,0

f'(x)=2x225x2=x25x2f^(c)=c25c2   المماس ميلf'(c)=f(b)f(a)ba=f(0)f(4)0+4=534=12   الوتر ميل12=c25c22c=25c2   بالتربيع

ميل المماس = ميل الوتر.

either 4c2=25c24c2+c2=255c2=25c2=5c==±5or  c=5(4,0)

الشكل

f(x)=2x+sinx , x[0,π]

  1. الدالة مستمرة في الفترة المغلقة 0,π لأنها دالة دائرية.
  2. الدالة قابلة للاشتقاق على الفترة المفتوحة 0,π

الشروط متحققة فإن مبرهنة القيمة المتوسطة متحققة.

f(x)=2x+sinxf'(x)=2+cosxf'(c)=2+cos(c)   المماس ميلf'(c)=f(b)f(a)ba=(2π+sinπ)0π0=2ππ=2   الوتر ميل

ميل المماس = ميل الوتر.

2+cos(c)=2cos(c)=22cos(c)=0c=π2(0,π)

(2)- إذا كانت f:[0,b]R , f(x)=x34x2 وكانت f تحقق مبرهنة القيمة المتوسطة عند c=23 فجد قيمة b

f(x)=x34x2f(x)=3x28xf'(c)=3c28cf'(23)=3(49)8(23)=43163=123=4   المماس ميلf'(c)=f(b)f(a)ba=f(b)f(0)b0=b34b20b=b(b24b)b=b24b   الوتر ميل

ميل المماس = ميل الوتر.

b24b=4b24b+4=0(b2)(b2)=0(b2)2=0بالجذرb=2

مشاركة الدرس

السؤال

إذا كانت f : [ 0 , b ] R   ,   f ( x ) = x 3 4 x 2 وكانت f تحقق مبرهنة القيمة المتوسطة عند c = 2 3 فجد قيمة b

الحل

f ( x ) = x 3 4 x 2 f ( x ) = 3 x 2 8 x f ' ( c ) = 3 c 2 8 c f ' ( 2 3 ) = 3 ( 4 9 ) 8 ( 2 3 ) = 4 3 16 3 = 12 3 = 4       المماس   ميل f ' ( c ) = f ( b ) f ( a ) b a = f ( b ) f ( 0 ) b 0 = b 3 4 b 2 0 b = b ( b 2 4 b ) b = b 2 4 b       الوتر   ميل

ميل المماس = ميل الوتر.

b 2 4 b = 4 b 2 4 b + 4 = 0 ( b 2 ) ( b 2 ) = 0 ( b 2 ) 2 = 0 بالجذر b = 2

مبرهنة القيمة المتوسطة

مبرهنة القيمة المتوسطة

إذا كانت f مستمرة في الفترة المغلقة a , b وقابلة للاشتقاق على الفترة المفتوحة a , b فإنه يوجد على الأقل قيمة واحدة c تنتمي إلى الفترة a , b وتحقق:

  1. المماس // الوتر أي أن ميلاهما متساويان.

  2. ميل الوتر المار بالنقطتين A,B يساوي ΔyΔx=f(b)f(a)ba

  3. ميل المماس للمنحني عند c = المشتقة الأولى للدالة f عند c أي f'(c)

  4. المماس والوتر متوازيان لذا يتساوى ميلهما أي أن f'(c)=f(b)f(a)ba

الشكل

لإيجاد قيمة c التي تحقق f'(c)=f(b)f(a)ba يجب توفر الشرطيين التاليين:

  1. أن تكون f دالة مستمرة في الفترة المغلقة a , b

  2. أن تكون f دالة قابلة للاشتقاق على الفترة المفتوحة a , b

ملاحظة: إن مبرهنة رول هي حالة خاصة من مبرهنة القيمة المتوسطة ففي مبرهنة رول يجب توافر شرط ثالث هو f(a)=f(b) أي أن الوتر والمماس يوازيان محور السينات أي أن فرق الصادات = 0 لذا يصبح الميل = 0 فتحصل على f'(c)=0

(1)- جد قيمة c التي تحقق مبرهنة القيمة المتوسطة لكل من الدوال الآتية:

f(x)=x26x+4 , x[1,7]

  1. الدالة مستمرة في الفترة -1,7 لأنها كثيرة الحدود.

  2. الدالة قابلة للاشتقاق على الفترة -1,7 لأنها كثيرة حدود.

f'(x)=2x6f'(c)=2c6f'c)=f(b)f(a)ba=f(7)f(1)7(1)=11118=0   الوتر ميل

ميل المماس = ميل الوتر.

2c6=02c=6c=3(1,7)

f(x)=25x2 , x[4,0]

أوسع مجال للدالة.

25x2025=x2x=±5x[5,5]

1. نبحث استمرارية في الفترة -4,0

a[4,0]f(a)=25a2Rlimx4+f(x)=limx4+25x2=2516=9=3limx0f(x)=limx025x2=250=25=5

الدالة مستمرة في الفترة المغلقة -4,0

2. الدالة قابلة للاشتقاق عند الفترة المفتوحة -4,0

f'(x)=2x225x2=x25x2f^(c)=c25c2   المماس ميلf'(c)=f(b)f(a)ba=f(0)f(4)0+4=534=12   الوتر ميل12=c25c22c=25c2   بالتربيع

ميل المماس = ميل الوتر.

either 4c2=25c24c2+c2=255c2=25c2=5c==±5or  c=5(4,0)

الشكل

f(x)=2x+sinx , x[0,π]

  1. الدالة مستمرة في الفترة المغلقة 0,π لأنها دالة دائرية.
  2. الدالة قابلة للاشتقاق على الفترة المفتوحة 0,π

الشروط متحققة فإن مبرهنة القيمة المتوسطة متحققة.

f(x)=2x+sinxf'(x)=2+cosxf'(c)=2+cos(c)   المماس ميلf'(c)=f(b)f(a)ba=(2π+sinπ)0π0=2ππ=2   الوتر ميل

ميل المماس = ميل الوتر.

2+cos(c)=2cos(c)=22cos(c)=0c=π2(0,π)

(2)- إذا كانت f:[0,b]R , f(x)=x34x2 وكانت f تحقق مبرهنة القيمة المتوسطة عند c=23 فجد قيمة b

f(x)=x34x2f(x)=3x28xf'(c)=3c28cf'(23)=3(49)8(23)=43163=123=4   المماس ميلf'(c)=f(b)f(a)ba=f(b)f(0)b0=b34b20b=b(b24b)b=b24b   الوتر ميل

ميل المماس = ميل الوتر.

b24b=4b24b+4=0(b2)(b2)=0(b2)2=0بالجذرb=2