حلول الأسئلة

السؤال

جد تكاملات كلاً مما يأتي:

الحل

( 3 x 2 + 1 x ) d x

( 3 x 2 + 1 x ) d x = ( 3 x 2 + 1 x 1 2 ) d x = ( 3 x 2 + x 1 2 ) d x = 3 x 3 3 + x 1 2 1 2 + C = x 3 + 2 x 1 2 + C = x 3 + 2 x + C

مشاركة الحل

تمارين (1-4)

(1)- جد تكاملات كلاً مما يأتي:

(6x2+4x+3)dx

(6x2+4x+3)dx=6x33+4x22+3x+C=2x3+2x2+3x+C

(3x1)(x+5)dx

(3x1)(x+5)dx=(3x2+15xx5)dx=(3x2+14x5)dx=3x33+14x325x+C=x3+7x25x+C

x(x+1)2dx

x(x+1)2dx=x(x+2x+1)dx=52x12(x+2x12+1)dx=(x32+2x+x12)dx=x522+2x22+x3232+C=25x52+x2+23x32+C

x3+27x+3dx

x3+27x+3dx=(x+3)(x23x+9)x+3dx=(x23x+9)dx=x333x22+9x+C

x32x2+15x5dx

x32x2+15x5dx=15x5(x32x2+1)dx=15(x22x3+x5)dx=15[x112x22+x44]+C=15[x1+x2x4+4]+C=15[1x+1x214x4]+C

x2+2x3+6x+13dx

x2+2x3+6x+13dx=x2+2(x3+6x+1)13dx==13(x3+6x+1)13(x2+2)dx=13(x3+6x+1)13(3x2+6)dxf¯(x)=3x2+623+C=1332(x3+6x+1)23+C=12(x2+6x+1)23+C=12(x3+6x+1)23+C

x23+2x3dx

x23+2x3dx=x23+2x13dx=x13(x23+2)dx=(x13+2x13)dx=x4343+2x2323+C34x43+2(32)x23+C=34x43+3x23+C

dxx2+16x+645

dxx2+16x+645=dx(x+8)25=dx(x+8)25(x+8)25dx=(x+8)3535+C53(x+8)35+C=53(x+8)35+C

2x93x77dx

ملاحظة x77=x

x7(2x23)7dx(2x23)17×dxf¯(x)=4x14(2x23)174xdx14(2x23)8787+C1478(2x23)87+C=732(2x23)87+C=732(2x23)87+C

(3x2+1x)dx

(3x2+1x)dx=(3x2+1x12)dx=(3x2+x12)dx=3x33+x1212+C=x3+2x12+C=x3+2x+C

ydy(192y2)13

(192y2)13ydyy¯=4y14(192y2)13(4ydy)=14(192y2)2323+C=1432(192y2)23+C=38(192y2)23+C

x416x+2dx

x416x+2dx=(x24)(x2+4)x+2dx=(x2)(x+2)(x2+4)(x+2)dx=(x2)(x2+4)dx=(x3+4x2x28)dx=x44+4x222x238x+C=x44+2x22x338x+C

(x31x3dx)

(x31x3dx)=(x131x13)dx=(x13x13)dx=x4343x2323+C=34x4332x23+C

مشاركة الدرس

السؤال

جد تكاملات كلاً مما يأتي:

الحل

( 3 x 2 + 1 x ) d x

( 3 x 2 + 1 x ) d x = ( 3 x 2 + 1 x 1 2 ) d x = ( 3 x 2 + x 1 2 ) d x = 3 x 3 3 + x 1 2 1 2 + C = x 3 + 2 x 1 2 + C = x 3 + 2 x + C

تمارين (1-4)

(1)- جد تكاملات كلاً مما يأتي:

(6x2+4x+3)dx

(6x2+4x+3)dx=6x33+4x22+3x+C=2x3+2x2+3x+C

(3x1)(x+5)dx

(3x1)(x+5)dx=(3x2+15xx5)dx=(3x2+14x5)dx=3x33+14x325x+C=x3+7x25x+C

x(x+1)2dx

x(x+1)2dx=x(x+2x+1)dx=52x12(x+2x12+1)dx=(x32+2x+x12)dx=x522+2x22+x3232+C=25x52+x2+23x32+C

x3+27x+3dx

x3+27x+3dx=(x+3)(x23x+9)x+3dx=(x23x+9)dx=x333x22+9x+C

x32x2+15x5dx

x32x2+15x5dx=15x5(x32x2+1)dx=15(x22x3+x5)dx=15[x112x22+x44]+C=15[x1+x2x4+4]+C=15[1x+1x214x4]+C

x2+2x3+6x+13dx

x2+2x3+6x+13dx=x2+2(x3+6x+1)13dx==13(x3+6x+1)13(x2+2)dx=13(x3+6x+1)13(3x2+6)dxf¯(x)=3x2+623+C=1332(x3+6x+1)23+C=12(x2+6x+1)23+C=12(x3+6x+1)23+C

x23+2x3dx

x23+2x3dx=x23+2x13dx=x13(x23+2)dx=(x13+2x13)dx=x4343+2x2323+C34x43+2(32)x23+C=34x43+3x23+C

dxx2+16x+645

dxx2+16x+645=dx(x+8)25=dx(x+8)25(x+8)25dx=(x+8)3535+C53(x+8)35+C=53(x+8)35+C

2x93x77dx

ملاحظة x77=x

x7(2x23)7dx(2x23)17×dxf¯(x)=4x14(2x23)174xdx14(2x23)8787+C1478(2x23)87+C=732(2x23)87+C=732(2x23)87+C

(3x2+1x)dx

(3x2+1x)dx=(3x2+1x12)dx=(3x2+x12)dx=3x33+x1212+C=x3+2x12+C=x3+2x+C

ydy(192y2)13

(192y2)13ydyy¯=4y14(192y2)13(4ydy)=14(192y2)2323+C=1432(192y2)23+C=38(192y2)23+C

x416x+2dx

x416x+2dx=(x24)(x2+4)x+2dx=(x2)(x+2)(x2+4)(x+2)dx=(x2)(x2+4)dx=(x3+4x2x28)dx=x44+4x222x238x+C=x44+2x22x338x+C

(x31x3dx)

(x31x3dx)=(x131x13)dx=(x13x13)dx=x4343x2323+C=34x4332x23+C